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6 — Simultaneous Localization and Mapping (SLAM)

Lecture Outline

* Introduction

« Extended Kalman Filter
« Particle Filter

« Underwater SLAM

« Concluding Remarks

» Introduction DALHOUSIE
+  SLAM Formulation UNIVERSITY
« EKF

Inspiring Minds

« Particle Filter

. Underwater SLAM % A C A D TA

+ Concluding Remarks NV ERS LT

* based on diagrams and lecture notes adapted from:
— Probabilistic Robotics (Thrun, et. al.)
— Autonomous Mobile Robots (Siegwart, Nourbakhsh)
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6 — Simultaneous Localization and Mapping (SLAM)
Control Scheme for Autonomous
Mobile Robot
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6 — Simultaneous Localization and Mapping (SLAM)

Introduction DALHOUSIE
*  SLAM Formulation @ UNIVERSITY
) EKF. . Inspiring Minds
Plan fOr Class * Particle Filter

Underwater SLAM A C AD I A

Concluding Remarks

* Mae then follows on with Bayesian filters to do a
specific example, SLAM

Y

Autonomous Robotics
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM) Erena oy DALHOUSIE
= ntroduction @

Robot Mapping e e o
When it is Applied Yoo HACADIA

when is simultaneous localization and mapping (SLAM)
needed?

* when a robot has to be truly autonomous with no human
intervention (e.g. underwater vehicles beyond a few km,
millions of miles away in space the operator has no
situational awareness of the robot’s environment)

e environment is unknown and there is no prior knowledge

* beacons and networks cannot be deployed or used (e.g. in
GPS denied areas like underwater or under-ice)

Dalhousie Fall 2011 /2012 Academic Term Autonomous Robotics Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM) s DALHOUSIE
ntroduction

RObot Mapping ElklA:MFormulation UNIVERSITY

i ) Inspiring Minds
Particle Filter

Where it is Applied . unenaersw — EIACADIA

Concluding Remarks

 |n all environments robots are in

undersea

Autonomous Robotics
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6 — Simultaneous Localization and Mapping (SLAM)

- = Introduction DALHOUSIE

Robot Mapping Problems . SUaFomuaion W) ONTVERSITY
D 'ff' It + Particle Filter i (nsprring Minds
ifficulty oo GHACADIA

most difficult perceptual inference problem in mobile robots

acquiring a spatial model of the robot’s environment for
navigation purposes

robot must have sensors that enable it to perceive its
environment e.g. cameras, range finders, sonar, laser,
tactile sensors, compass and GPS

sensors are subject to error (measurement noise)
sensors have finite range (e.g. sound can’t penetrate walls)

— this means the robot has to navigate through its
environment when map building

motions commands (controls) issued during mapping carry
information for building maps since they convey info about
locations where different sensor measurements are taken

Autonomous Robotics
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Markov Localization (Bayes Filter)

Quick Review

* Introduction @ DALHOUSIE

¢ SLAM Formulation
+ EKF
« Particle Filter

- Underwater SLAM ACADIA
L3 U NI VERSTI T Y

+ Concluding Remarks

UNIVERSITY

Inspiring Minds

observation model: P(z, |x,) or P(z, |x,,m)

— probability of a measurement z, given that the robot is at

position x, and map m
motion model: P(x, | x,_,,u,)

— posterior probability that action «, takes the robot from

states x, ; to x,
belief

— posterior probability
— conditioned on available data

— Bel(x;) = p(x; | z,uy)

prediction

— estimate before measurement: Ee?(xt) = p(x; | z;u;_q)

Dalhousie Fall 2011 /2012 Academic Term
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6 — Simultaneous Localization and Mapping (SLAM)

Markov Localization(Bayes Filters)
Quick Review

* prediction (prior):
bel(x,)= | p(x, |u,,x,.) bel(x,,) dx,

(convolves motion model with
belief from previous time step)

« update (posterior):

bel(x,) = np(z,; | x,) bel(x,) \

. I
Incorporates the measurement

Dalhousie Fall 2011 /2012 Academic Term Autonomous Robotics

¢ Introduction
¢ SLAM Formulation
+ EKF

DALHOUSIE
UNIVERSITY

Inspiring Minds

« Particle Filter

+ Concluding Remarks

||||||||||

. Underwater SLAM @ A CADI

u
i i i i e e s . . e s

bel(x)

bel(x,) is uniform over all poses

pizix)

observation model, p(z,|x,m)
A A A

bel(x)

bel(x,)=bel(x,) *p(z,|x,m)
A A A

robot moves to the right
bel(x,) ® p(x,|u,x, ;)
oo -

bel(x)

A -
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6 — Simultaneous Localization and Mapping (SLAM)

Markov Localization (Bayes Filter)

Quick Review

- Introduction @ DALHOUSIE

¢ SLAM Formulation
+ EKF
« Particle Filter

- Underwater SLAM ACADIA
L3 U NI VERSTI T Y

+ Concluding Remarks

UNIVERSITY

Inspiring Mi

 for developing a range/bearing sensor model it is useful to
introduce a correspondence variable between the feature f!

and the landmark m; of the map

— this variable is the correspondence and it is denoted ¢/
— ¢/ Is the true identity of the observed feature f

* EKF localization assumes the map is represented by a
collection of features and that the correspondences are

known

Dalhousie Fall 2011 /2012 Academic Term
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6 — Simultaneous Localization and Mapping (SLAM)

- » Introduction : DALHOUSIE

Robot Mapping Challenges ;S Formuaion Ul\g\ngs%g_r_y
- . «  Particle Filter PSR

1. Modelling Measurement Noise =~ : unewaersw A CADIA

« robot motion itself is subject to errors and controls alone are
insufficient to determine a robot’s pose within its
environment

* modelling measurement noise is a key challenge
— robotic mapping would be relatively easy if the noise of
different measurements are statistically independent

 robot would just make more measurements to negate
noise effects

— unfortunately, with robotic mapping measurements
errors are statistically dependent

* errors in controls accumulate over time and affect the
way sensor measurements are made

Autonomous Robotics
Dalhousie Fall 2011 / 2012 Academic Term Faculties of Engineering & Computer Science
CSCI 6905 / Mech 6905 — Section 6 HE O EnaimeeTne & Homp 0



6 — Simultaneous Localization and Mapping (SLAM)

= » Introduction DALHOUSIE

Robot Mapping Challenges . Suromuaion @) UNIVERSIT Y
- - - . Partic|e F||ter inspiring IVitnas
Localization and Mapping Y GACADIA

* mapping sometimes referred to in conjunction with
localization (determine robot pose)

— estimating where things are and determining where the
robot is (both have uncertainty) — is solved in conjunction

— allows the measurement and control noise to be
Independent in the robot state estimation

 thus the problem of mapping creates an inherent robot
localization problem so robot mapping is also referred to as
concurrent mapping and localization (CML)

 state-of-the-art algorithms in mapping are probabilistic due
to the uncertainty and sensor noise

Dalhousie Fall 2011 /2012 Academic Term Autonomous Robotics Faculties of Engineering & Computer Science

CSCI 6905 / Mech 6905 — Section 6 12



6 — Simultaneous Localization and Mapping (SLAM) . DALHOUSIE
* Introduction @

Robotic Mapping Challenges  : gpvromee UNIVERSITY

« Particle Filter

1. Modelling Measurement Noise - unenaersian — EIACADIA

Concluding Remarks

cumulative effect of control errors on future sensor
Interpretations

small rotation error at one end of a corridor cumulates to many meters
of error at the other end relative to map for robot path obtained by
odometry

Autonomous Robotics :
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM) SRR DALHOUSIE
* Introduction @

Robotic Mapping Challenges  : gromuan UNIVERSITY

_ . Inspiring Minds
+ Particle Filter

2. High Dimensionality of Entities - ucewaersiw — BFACADIA

Concluding Remarks

« consider the info to describe your home environment with
just corridors, intersections, rooms, and doors
— detailed 2D floor plan requires thousands of coordinates
to define
— 3D visual map would require millions of coordinates
— from a statistical perspective, each coordinate is a
dimension of the estimation problem

Autonomous Robotics
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM)

. . e Introduction . DALHOUSIE
Robotic Mapping Challenges ;. gpvromee UNIVERSITY
+  Particle Filter ST

3. Correspondence Problem ; Szgim?éirééﬁﬁks WACADIA

 also referred to as the data association problem — most
difficult problem

— determine if sensor measurements taken at different
times correspond to the same physical object

robot trying to map a cyclic
environment; when closing cycle
robot has to localize itself relative to
the previous map — by then,
cumulated pose error may be
unbounded

Autonomous Robotics
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM) i DALHOUSIE
* Infroduction @

Robotic Mapping Challenges  : gpvromee UNIVERSITY

Particle Filter

4. Environment Changes with Time - uvwnaessw  EHACADIA

Concluding Remarks

* on scales that vary depending on the environment:
— from a tree that changes very slowly
— sea bottom that changes due to currents over days

— location of a chair that could change on the order of
minutes,

— or people movement that changes constantly

* environment changes manifest as inconsistent sensor
measurements (when they are not)
— few algorithms that /learn meaningful maps of dynamic
environments (lots of room for research contributions
here!)

Autonomous Robotics
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM) e A
+  Introduction @ DALHOUSIE

Robot Mapping Challenges . SLAM Fomator UNIVERSITY

. . Inspiring Mi
Particle Filter

5. Path-Planning On-the-Fly @ i mACADIA

Concluding Remarks

* robot must plan its path during mapping

 task of generating robot motion plans to build a map is
referred to as robotic exploration
— optimal path planning in a fully modelled environment is
relatively well understood

— robots in unknown environments has incomplete model

— have to accommodate contingencies and surprises that
arise during map building
» generate plans in near real-time
» where to move balanced against map information

gain and time and energy to obtain info as well as
possible loss of pose info along the way

Autonomous Robotics
Faculties of Engineering & Computer Science
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The SLAM Problem

* Introduction @ D ALHOUSIE
»  SLAM Formulation UNIVERSITY
) EKF. . Inspiring Minds
* Particle Filter

* Underwater SLAM

+ Concluding Remarks

HACADIA

A mobile robot can build a map of an environment and at the
same time use this map to deduce its location. The trajectory
of the robot and the location of all landmarks are estimated
on-line without the need for any a priori knowledge of location

* simultaneous estimate of
both robot and landmark
locations required

 true locations are never
known or measured directly

 observations are made
between the true robot and
landmark locations.

Xis2

{i? m;
»

.
7
N 7
Xie1 - II

| > ¥
Zg 1) ‘

]
gj m; Robot Landmark
* Estimated |- {> - '
True Z\i}
k = time index

Autonomous Robotics
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Probabilistic SLAM
Recursive Solution

* Introduction @ DALHOUSIE

»  SLAM Formulation
+ EKF
« Particle Filter

- Underwater SLAM ACADIA
L3 U NI VERSTI T Y

+ Concluding Remarks

UNIVERSITY

Inspiring Mi

« compute the probability distribution for all times ¢

p(Xop,m| Zy.s,Ug,X0)

(*)

this is the joint posterior density of the landmark location
and vehicle state x, given recorded observations Z & control
inputs U (up to and including ¢) with initial vehicle pose x,

« desire a recursive solution (i.e. calc from the same
probability distribution from previous time step)

— start with estimate for distribution
p(xe_1,m| Zoy1,Ugy-1)

at -1, use Bayes theorem to determine the joint
posterior, following control «, and observation z,

Dalhousie Fall 2011 /2012 Academic Term

Autonomous Robotics
CSCI 6905 / Mech 6905 — Section 6
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Probabilistic SLAM
Observation and Motion Models

* Introduction @ DALHOUSIE

»  SLAM Formulation
+ EKF

UNIVERSITY

Inspiring Minds

Particle Filter

- Underwater SLAM ACADIA
L3 U NI VERSTI T Y

+ Concluding Remarks

* need motion (state transition) and observation models to
describe the effect of the control input, «,

 observation model when robot and landmark location

known:
p(zt | 'xta m)

 motion model for state transitions:

PO | xp_1,uy)

state transition is assumed to be a Markov process where
next state x, depends only on the immediate state, -1,

before it and applied control ,

— independent of observation and map

Autonomous Robotics
CSCI 6905 / Mech 6905 — Section 6

Dalhousie Fall 2011 /2012 Academic Term
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6 — Simultaneous Localization and Mapping (SLAM) ntroduct DALHOUSIE
ntroauction

SLAM : glk/;M Formulation UNIVERSITY

Inspiring Minds

Problem Formulation f ”” FACADIA

* no map available and no pose information

p(XO:t ,1m | Zo- >U0:t)
landmark 1 — @

observations — 9 9
robot poses — “ a @ @ . o @
(

e < () @\
landmark 2 —» @

Autonomous Robotics
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM)

* Introduction DALHOUSIE
«  SLAM Formulation @ UNIVERSITY

Two Forms of SLAM L Farice Fier
» Underwater SLAM AC ADI A

+ Concluding Remarks

there are really two forms of the SLAM problem:

« full SLAM: estimates posterior for entire path (0:¢r) and map
which is what is discussed so far (particle filter solution):

p(Xoy,m | Zo+>-Uoy)

« online SLAM: estimates posterior for current pose using

most recent pose and map only (i.e. last time
step) (EKF solution))

p(x;m| Zos Ugy) =][...[ p(Xog,m| Zo;,Ugy) dxodxydxs...dx,
iIntegrations typically done one at a time

— discards past controls and measurements once
processed since they are not used again

Dalhousie Fall 2011 /2012 Academic Term Autonomous Robotics

CSCI 6905 / Mech 6905 — Section 6 Facultis of Engincering & Computer Science
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* Introduction DALHOUSIE
SLAM Formulation @ UNIVERSITY

. EKF [1nnsbirine Minds
SLAM I eature * Particle Filter nspiring Mind
. 4
Underwater SLAM "Z(: A ( . A.D' l. 1A

+ Concluding Remarks

e a continuous and discrete component
e continuous
— location of objects in the map and the robot pose

» objects may be landmarks in the feature-based
representation

 object patches detected by range finders
« discrete (more on this later)

— correspondence or data association between landmarks
and measurements, i.e. how a newly detected object
relates to previously detected ones

» either the object was previously detected or it was not

Autonomous Robotics
Dalhousie Fall 2011 / 2012 Academic Term Faculties of Engineering & Computer Science
CSCI 6905 / Mech 6905 — Section 6 ! e e e



6 — Simultaneous Localization and Mapping (SLAM) Introducti D ALHOUSIE
ntroduction
SLAM Formulation @ UNIVERSITY

. . EKF o irine Minds
O n -I I ne S LAM + Particle Filter prspirig M
. Underwater SLAM A C A D I A

Concluding Remarks

» graphical model of on-line SLAM (one pose at a time)

p(x,m| 2oy, Ug)=[[...] p(Xoy,m| Zoy,Uqy ) dxodxdxy...dx;

Autonomous Robotics
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM) Introducti D ALHOUSIE
ntroduction
SLAM Formulation @ UNIVERSITY

° EKI [nspiringe Minds

I u I I B I own S LAM * Particle Filter fsprrig Mind
o 4

Underwater SLAM ‘><‘ 2 A {‘ . »At .D. |I 1A

Concluding Remarks

 graphical model of full blown SLAM

t t+1

Y Y @ Y
(),

p(Xoy,m| Zyy ,Ugy)

Autonomous Robotics Faculties of Engineering & Computer Science
CSCI 6905 / Mech 6905 — Section 6 gineeTne & Lomp ye
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6 — Simultaneous Localization and Mapping (SLAM)

Probabilistic SLAM

* Introduction @ DALHOUSIE

»  SLAM Formulation
+ EKF
« Particle Filter

- Underwater SLAM ACADIA
L3 U NI VERSTI T Y

+ Concluding Remarks

UNIVERSITY

Inspiring Minds

 SLAM implemented in standard 2-step recursive prediction
(time update) correction (measurement update) form:

time update (prior distribution)

p(xt,m|Z():t_1,U0:t,x0)=fp(xt |xt—l,>%t) B o
X P(Xp_1,M | Ly—1,U 0:1—15 X0 )AXs_

measurement update (posterior distribution)

p(xtam | ZO:taUO:taxO) —

p(zy | x,m)p(xy,m| Zos_1,Uqgy,X0)

Pz | Zoy-1,Uqy)

* now, have a recursive procedure for calculating

p(Xo,m| Zys,Ugs,X0)

» for robot state x, and map m at time ¢ based on all control
inputs U and observations Z as functions of the motion and

panRPSERVANIANMadels

Autonomous Robotics
CSCI 6905 / Mech 6905 — Section 6

Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM)

* Introduction DALHOUSIE
¢  SLAM Formulation @ U N 1 V E R S I T Y

Strength Of SLAM : Ezrlzicle Filter
+  Underwater SLAM A C A D I A

+ Concluding Remarks

 the error between estimated & true landmark locations are
common between landmarks and come from a single
source: errors in knowledge of where the robot is when the
landmark observations were made

= — [

andmark location error estimates are highly correlated
— relative location between landmarks m; —m; known with
good accuracy even when absolute locations uncertain

— correlations between landmark estimates increase
monotonically as more and more observations are made

— knowledge of relative location of landmarks always
iImproves and never diverges regardless of robot motion

» this is due to observations being nearly independent
for relative locations between landmarks

Dalhousie Fall 2011 /2012 Academic Term Autonomous Robotics Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM)

* Introduction DALHOUSIE
«  SLAM Formulation @ UNIVERSITY

n . EKF [nspiring Minds
SLAM SOIUtlonS . Particle Filter vrspirig M
. k1
Underwater SLAM A C AD I A

+ Concluding Remarks

* Now require representations for:
— motion model
— observation model

that allow efficient and consistent computation of the prior
(time) and posterior (measurement) distributions

 most common representation is with state space model and
additive Gaussian noise which leads to use of extended
Kalman filter (EKF) solution

 alternative representation is to describe robot motion model
as a set of samples of a more general non-Gaussian
probability distribution which leads to the use of particle
filter or FastSLAM as another solution

* there are many others but will only cover these two today

Dalhousie Fall 2011 /2012 Academic Term Autonomous Robotics Faculties of Engineering & Computer Science
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SLAM in Action-1/9

« use internal representations for
— positions of landmarks (map)
— sensor parameters
* assume: robot uncertainty at
start position is zero

Autonomous Robotics
CSCI 6905 / Mech 6905 — Section 6

Dalhousie Fall 2011 /2012 Academic Term

T

+ Introduction DALHOUSIE
*  SLAM Formulation UNIVERSITY
. EKF_ . Inspiring Minds
+ Particle Filter
- Underwater SLAM ACADIA
+ Concluding Remarks X e C' v 'D' b

B C

& L]

start: robot has zero uncertainty

Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM)

* Introduction DALHOUSIE

*  SLAM Formulation UNIVERSITY

I a 'I,] AC .DI1 « EKF irine Minds
S M I tl 2 / 9 - Particle Filter Inspiring Minds

N I V ER S 1T Y

Underwater SLAM A CADIA

Concluding Remarks

B C
® e

‘S

first measurement of feature A

* measure

Autonomous Robotics
Dalhousie Fall 2011 / 2012 Academic Term Faculties of Engineering & Computer Science
CSCI 6905 / Mech 6905 — Section 6 ! i



6 — Simultaneous Localization and Mapping (SLAM)

* Introduction DALHOUSIE
¢« SLAM Formulation UNIVERSITY

SLAM in Action-3/9 L i
+ Underwater SLAM AC.A.D.IA

+ Concluding Remarks

* robot observes a feature which ° c
IS mapped with an uncertainty
related to the sensor error
model (i.e. measurement
model)

« update the internal representation

Autonomous Robotics
Dalhousie Fall 2011 / 2012 Academic Term Faculties of Engineering & Computer Science
CSCI 6905 / Mech 6905 — Section 6 ! R



6 — Simultaneous Localization and Mapping (SLAM) Introducti D ALHOUSIE
ntroduction
SLAM Formulation UNIVERSITY

SLAM in ACtion - 4 l 9 : Egrlzicle Filter Inspiring Minds
+ Underwater SLAM ACA D IA

Concluding Remarks NV ERS LT
 as robot moves (in response to 5 c

the motion mode), its pose

uncertainty increases

g robot moves forwards: uncertainty grows
« predict how the robot has moved

Autonomous Robotics
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM)

Introduction . DALHOUSIE
- . gl}_él\/l Formulation UNI V.E_ RS I‘T Y
SLAM In Actlon — 5 / 9 Particle Filter d Inspiring Minds
e s @A CADIA
* robot observes two new features 5 c
>
o N\
A 0

robot makes first measurements of B & C

* measure

Autonomous Robotics
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM)

SLAM in Action-6/9

 their position uncertainty
results from the combination of
the measurement error with the
robot pose uncertainty

|

— map becomes correlate
with the robot position
estimate

—

« update the internal representation

* Introduction DALHOUSIE
*  SLAM Formulation @ UNIVERSITY
. EKF_ . Inspiring Minds
* Particle Filter

* Underwater SLAM
+ Concluding Remarks

HACADIA

robot makes first measurement of B & C

Autonomous Robotics

Dalhousie Fall 2011 /2012 Academic Term
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6 — Simultaneous Localization and Mapping (SLAM)

SLAM in Action-71/9

* robot moves again and its
uncertainty increases (motion
model)

« predict how the robot has moved

Autonomous Robotics
CSCI 6905 / Mech 6905 — Section 6

Dalhousie Fall 2011 /2012 Academic Term

Introduction DALHOUSIE
SLAM Formulation UNIVERSITY
EKF_ ) Inspiring Minds
Particle Filter

Underwater SLAM ACADIA
Concluding Remarks X z C' vk 'D' b

robot moves again: uncertainty grows still

more

Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM) Introducti D ALHOUSIE
ntroduction
SLAM Formulation UNIVERSITY

SLAM in ACtiOn — 8 l 9 Eﬁide Filter Inspiring Minds
+ Underwater SLAM ACA D IA

Concluding Remarks NV ERS LT

* robot re-observes an old feature @
— loop closure detection

robot re-measures A: “loop closure”

* measure

Autonomous Robotics
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM) Introducti D ALHOUSIE
* Introduction
*«  SLAM Formulation @ UNIVERSITY

SLAM in Action-9/9 K i
+ Underwater SLAM AC.A.D.IA

+ Concluding Remarks

* robot updates its position: the - ;
resulting position estimate Q O
becomes correlated with the -

feature location estimates

* robot’s uncertainty decreases |
and so does the uncertainty in ® -
the rest of the map A B

robot re-measures A: “loop closure”
uncertainty decreases

« update the internal representation

Autonomous Robotics
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM)

* Introduction DALHOUSIE
e SLAM Formulation @ UNIVERSITY

About Covariance Matrix X i
+ Underwater SLAM AC.A.D.IA

+ Concluding Remarks

« correlation measures the degree of linear dependence between two variables
« covariance of two variables measure how strongly correlated two variables are

e covariance matrix 2’ contains the covariance on: robot position, landmarks,
between robot position and landmarks and between the landmarks

« cell A contains the covariance on robot position, a 3 by 3 matrix (x, y and 6)

« B is the covariance on the first landmark, a 2 by 2 matrix, since the landmark
does not have orientation, 6 ; C is covariance for the last landmark.

« D contains the covariance between the robot state and the first landmark; E
contains the covariance between the first landmark and the robot state; E can
be deduced from D by transposing sub-matrix D

« F contains the covariance between the last landmark and the first landmark,
while G contains the covariance between the first landmark and the last

landmark, which again can be deduced by transposing F A E
* cov(X, Y) = E{[X- E(X)I[Y - E(Y)]}
« cor(X, Y)=cov(X, Y)/[sqrt(var(x) *sqrt(var(Y)] D B L-l.] G

covariance matrix -

Dalhousie Fall 2011 /2012 Academic Term Autonomous Robotics 1 F C
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6 — Simultaneous Localization and Mapping (SLAM)

Introduction DALHOUSIE
SLAM Formulation UNIVERSITY

EKF SLAM Implementation L Fartce Fier
» Underwater SLAM A CA D TA

Concluding Remarks NV ERS LT

« Kalman filters are Bayesian filters that represent posterior,
p(x, m |z, u) with Gaussians

Estimated Path of the Vehicle

p0f+ b2 [ reawerenms | Example of Kalman filter estimation

+ Tentative Features

o MapFealures of the map and vehicle pose [1].

2| — Wehicle Path

Shown is the path of an AUV with
range measurements from a sonar.
14 features are identified from the
sonar data.

Ellipse around features convey

_157@_‘) uncerftalnty that r.e_malns after
Y0 SO AR SRR SSSSS TSTTTORE U mapping as specified by the
i i i i G o™ i . .
~10 0 10 20 a0 40 covariance matrix
Y (m)
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6 — Simultaneous Localization and Mapping (SLAM)

EKF SLAM Implementation

Results Mapped

Introduction DALHOUSIE
SLAM Formulation UNIVERSITY
EKF_ = Inspiring Minds
Particle Filter

Underwater SLAM @ ACADIA
Concluding Remarks UNTVERSITY

(a) map of landmarks obtained in simulation (b) correlation matrix after 278
iterations of Kalman filter mapping. Checkerboard appearance verifies
theoretical find that in the limit, all landmark location estimates are fully
correlated (c) normalized inverse covariance matrix of the same estimate

shows the dependencies are local.

@) . )
-
- !
& o
Ly J_
2 a
oy -
i F
i ol
- [
@

Dalhousie Fall 2011 /2012 Academic Term

(b)

n
u
W |
LW |

:-

e
.-'.-.---

-.-
l::ll-l.l
==

|
e

N

=

.I
| -:'I:- -

| ’- I.I
|

u --..

| I- l.l

] I.l.l

| I-'l.l

| I- l.l N

u 'I.I.-I
-

(c)

Autonomous Robotics

CSCI 6905 / Mech 6905 — Section 6

Faculties of Engineering & Computer Science

40



6 — Simultaneous Localization and Mapping (SLAM)

Kalman Filtering
Assumptions

 three main ones:

* Introduction DALHOUSIE
* SLAM Formulation @ UNIVERSITY
> B Inspiring Minds

« Particle Filter

- Underwater SLAM ACADIA
L3 U NI VERSTI T Y

+ Concluding Remarks

(i) next state function (motion model) linear with added

Gaussian noise

(i) same is true of the perceptual model
(ilf) the initial uncertainty must be Gaussian

Dalhousie Fall 2011 /2012 Academic Term
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6 — Simultaneous Localization and Mapping (SLAM)

. * Introduction DALHOUSIE

Extended Kalman Filter (EKF) : sfomsr @ U0ERSHY
State Model - Particle Filter i S e
ate Viode e s @A CADIA

* in a linear state function, robot pose x,, and map m,, at time ¢
~ linearly with previous pose x, ;, map m,_;, and control u,

— for map, obviously true since the map does not change

— however, x, usually governed by a trig function that
varies nonlinearly with previous pose x, ; and control u,

« to accommodate such nonlinearities Kalman filters
approximate the robot motion model with a linear
function obtained via Taylor series expansions to yield
the extended Kalman Filter (EKF)

« motion commands approximated by a series of
smaller motion segment
— usually works well for most robotic vehicles

Autonomous Robotics
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM)

* Introduction DALHOUSIE
EKF SLAM +  SLAM Formulation @ UNIVERSITY
y EKF_ . Inspiring Minds
State Motion Model . Grematersm  BRACADIA
* Concluding Remarks UNITVERSIT:Y

* p(x,|x. u)=Ax; + Bu,+w,
* A and B are matrices that implement linear mapping from
state x, , and motion command u to state x,
— noise (assumed Gaussian) in motion is modeled via w,
which is assumed to be normally distributed with zero
mean and covariance Q,

more specifically,
o pOxg|Xipu) S X = f(X_1,up) + Wy
where f(..) models the robot dynamics / kinematics /
odometry

Autonomous Robotics
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM)

+ Introduction DALHOUSIE
EKF SLAM +  SLAM Formulation @ UNIVERSITY
i EKF_ . Inspiring Minds
Observation Model . naemaersiv  EIACADIA
* Concluding Remarks UNTVERSITSY

sensor measurements usually nonlinear with non-Gaussian
noise

approximate through a first degree Taylor series expansion,
l.e. p(z,|x, m) = Cx, + v,
C is a matrix (a linear mapping) and v, is the normally

distributed measurement noise with zero mean and
covariance R,

more specifically, p(z; | x;,m) < z; = h(x;,m)+v;
where /(..) describes the geometry of the observation

these approximations work well for robots that can measure
their ranges and bearings to landmarks

Autonomous Robotics
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6 — Simultaneous Localization and Mapping (SLAM)

EKF SLAM

Overview

« EKE

« Introduction DALHOUSIE

*+  SLAM Formulation UNIVERSITY
Inspiring Minds

«  Particle Filter o

. Underwater SLAM ACADIA

+ Concluding Remarks ‘>"<‘ e C‘ v "[‘)' b

« similar to EKF implementation for robot localization

« EKF SLAM summarizes all past experience in an extended
state vector, y, compromising of robot pose x, and the
position of all map features m, and an associated

covariance matrix 2, :

Y

- for a MindStorm robot,
size of y, = 3 + 2n since the
n map feature have only 2
coordinates each

- size of X, = (3+2n)?

Xt
m

yt - eee

m

t

n—1

)

xm, xm,
Zn/llx 2I/nln/ll o 2n/lln/ln—l
zI/nn— X Zn/ln—ln/ll 2n/ln—ln/ln 1 _|

)

* as robot moves and makes measurements, y,and 2, are
updated with the standard EKF equations

 correlations are important for convergence, the more
observations that are made the more correlations between
the features will grow — better the SLAM solution

Dalhousie Fall 2011 /2012 Academic Term
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6 — Simultaneous Localization and Mapping (SLAM)

i * Introduction . DALHOUSIE
Compute Mean and Covariance : g Ulﬁj\}iifis\ﬁ,‘f

. - Particle Filter S
Time Update e e @ACADIA

apply standard EKF method to calculate the mean
_ -
|:xf|t} _ E{xz | 0.t:|
ny m|Zo.
and covariance: . [Zu T |
“tit — T
| _me meJﬂt

_E || _i?t] th _)Et jTZm

m—ny m—nmy
of the joint posterior distribution p(x,,m|Z,.,,U,.,, x,) from
time update Xtle—1 = J (101, Uy)

T
z“xx,t|z‘—1 =Vf 2xx,z‘—1|z‘—lvf +0;

such that Vf is the Jacobian of f evaluated at the estimated x;_y .
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6 — Simultaneous Localization and Mapping (SLAM)

i * Introduction . DALHOUSIE

Compute Mean and Covariance Er UNIVERSITY
. «  Particle Filter S e
Observation Update - enaersn  EHACADIA

e observation update:

Bﬁit} = [)?t|tn7lt—1 ]+ Wi [Zt — (X1, mt—l)]]
t

T
2t|t = Zt|t—1 -W,.S:W,

such that
S; =VhZy . Vh' +R,
To-1

and Vv is the Jacobian of / evaluated at X,—; and m,_
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6 — Simultaneous Localization and Mapping (SLAM)

EKF SLAM Drawbacks

convergence

* Introduction @ DALHOUSIE

¢ SLAM Formulation
+ EKF
« Particle Filter

- Underwater SLAM ACADIA
L3 U NI VERSTI T Y

+ Concluding Remarks

UNIVERSITY

Inspiring Minds

« convergence of the map is based on the monotonic
convergence of the determinant of the map covariance
matrix (2, ) and all landmark pair submatrices to zero

computational effort

* oObservation update step requires all landmarks and the
covariance matrix be updated every time an observation is
made — computation grows quadratically with # of
landmarks, it is a little better than that with optimizations

Dalhousie Fall 2011 /2012 Academic Term
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6 — Simultaneous Localization and Mapping (SLAM) Introducti D ALHOUSIE
* Introduction
¢ SLAM Formulation @ UNIVERSITY

EKF SLAM Drawbacks L Farice Fier
*  Underwater SLAM AC ADI A

+ Concluding Remarks

data association
* errors in associating observations with landmarks breaks it

— loop-closure where a robot returns to re-observe
landmarks after having been away a long time is difficult

— especially difficult if landmarks are not simple points and
look different from different directions (e.g. mines with
side scan sonar images)

nonlinearity

* linearized versions of nonlinear model and observation
models used

— can result in huge inconsistencies in the solutions

Autonomous Robotics
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM)

FastSLAM

* Introduction DALHOUSIE
*  SLAM Formulation @ UNIVERSITY
+ EKF Inspiring Minds

+ Particle Filter

- Underwater SLAM ACADIA
L3 U NI VERSTI T Y

+ Concluding Remarks

better solution: FastSLAM [2] using a patrticle filter
— fundamental shift in recursive probabilistic SLAM

— particle filter captures the nonlinear process model and
non-Gaussian pose distribution for robot pose estimation

— Rao-Blackwellized method reduces computation effort
(FastSLAM still linearizes observation model, like EKF)

Dalhousie Fall 2011 /2012 Academic Term
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6 — Simultaneous Localization and Mapping (SLAM) introduct DALHOUSIE
. ntroauction

Particle Filter SLAM . SLAM Formuation UNIVERSITY

: ; Inspiring Minds
+ Particle Filter

Definitions .+ Undenaersiav — BIACADIA

Concluding Remarks &~ 0 ~iv e ks

- particle filter: models that represent probability distributions as
a set of discrete particles which occupy the state
space

« particle: a point estimate of the state with an associated

weight, w, p; = (v, w))

each particle defines a d|fferent vehlcle trajecotry
hypothesis

|
e _'H_.-'

probability distribution (ellipse) as particle set (red dots)

Autonomous Robotics
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6 — Simultaneous Localization and Mapping (SLAM)

" " * Introduction DALHOUSIE
*  SLAM Formulation
Particle Filters - iremanen ) ONIVERSITY
" » Particle Filter
OverVIeW * Underwater SLAM A C A D IA
+ Concluding Remarks

high dimensionality state-space of SLAM makes direct
application of particle filters computationally infeasible

it is possible to reduce the sample space by applying a
particle filter where a joint space is partitioned according to

product rule: p(x1,X%7) = p(xy | x1) p(x1)

if p(x,|x;) can be represented analytically then only p(x)
need be sampled x( ) p(x1)

N
joint distribution is then represented by the set: {x p(x2|xf’ }l
and statistics such as the marginal probability

1 N .
p(x2) z—219(962 le(”)
N
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6 — Simultaneous Localization and Mapping (SLAM)

u n * Introduction DALHOUSIE
Particle Filters *  SLAM Formulation UNIVERSITY
: EKF. : Inspiring Minds
- * Particle Filter
OverVIeW + Underwater SLAM @A CA D IA
* Concluding Remarks UNTVERS LTV

* recursive estimate performed by particle filtering for pose
states and EKF for map states

* represents beliefs by random samples
« estimation of nonlinear, non-Gaussian processes
« Sampling Importance Re-Sampling (SIR) principle
— draw the new generation of particles
— assign an importance weight to each particle
— re-sample as needed

weighted samples after resampling
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6 — Simultaneous Localization and Mapping (SLAM) Introducti D ALHOUSIE
* Introduction
¢ SLAM Formulation @ UN]VE RSITY
EKF

Implementation B Inspirtng Min
+ Underwater SLAM A CA D IA

+ Concluding Remarks

« as with EKF, the joint SLAM state may be factored into a
robot component and a conditional map component:

p(xg:-m| Zo-4,Ugs,X0)

-
~

C
(-]
-

— nlm | . ~ Yn( I
= PUN [ A Q4> 40:t ) PAAQ |

— the probability distribution is on the trajectory X, , rather
than the single pose x,

— when conditioned on the trajectory the landmarks
become independent — that is why particle filters are so
fast

— map is represented as a set of independent Gaussians

Autonomous Robotics
Faculties of Engineering & Computer Science
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6 — Simultaneous Localization and Mapping (SLAM)

. * Introduction . @ DALHOUSIE
Implementation e Formuaten UNIVERSITY
- o Particle Filter
Overview . Undenatersian — EIA CADIA
* Concluding Remarks

» essential structure of FastSLAM is a Rao-Blackwellized
(RB) state where the trajectory is modelled by weighted
samples and the map is determined analytically

* joint distribution at time ¢, is represented by the set:
- N
. ptm X, 20, |

where the map associated with each particle is composed
of independent Gaussian distributions:

x D 2o =TI x 7,
p(l’l’l| 0:Y° O.l‘) Hp(m]| 0:° O.l‘)
J
 recursive estimation performed by particle filtering for the
pose states and the EKF still for the map states
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6 — Simultaneous Localization and Mapping (SLAM)

. * Introduction @ DALHOUSIE
*  SLAM Formulation UNIVERSITY
I m plementatlon * EKFh ; Inspiring Minds
Ma o Ear(‘jttole Ftnite;LAM i A C A D I A
. nderwater -
p + Concluding Remarks WATLAERCRIS T T

» updating map for given trajectory particle x| is trivial

* each observed landmark is processed individually as an
EKF measurement update from a known pose

* unobserved landmarks are unchanged

. <J A single realization of robot trajectory in the

" FastSLAM process. Ellipsoids show the proposal
distribution for each update stage from which a
robot pose is sampled, and, assuming this pose is
perfect, the observed landmarks are updated.
Thus, the map for a single particle is governed by
the accuracy of the trajectory. Many of these
trajectories provide a probabilistic model of robot
location.
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6 — Simultaneous Localization and Mapping (SLAM)

Implementation
Pose States

* Introduction @ DALHOUSIE

¢ SLAM Formulation
+ EKF
«  Particle Filter

- Underwater SLAM ACADIA
L3 U NI VERSTI T Y

+ Concluding Remarks

UNIVERSITY

Inspiring Minds

* propagating the pose particles is much more complex

 particle filter is derived from a recursive form of sample,
sequential important sampling (SIS) which samples from a
joint state history and ‘telescopes’ the joint into a recursion

R I

via the product rule:

P(x, X150, x7 | Zo.7) = p(X0 | Zo.7) (X1 | X0, Z0:7 )so- P(XT | X071, 20T )
at each time step ¢, particles are drawn from a proposal
distribution: z(x; | X¢.,_1,Z¢.;) Which approximates the true
distribution r(x; 1 Xo.-1.Zo.r) and the samples are given

iImportance weights

« approximation error grows with time increasing the variation
In sample weights and thus degrade the statistical accuracy
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6 — Simultaneous Localization and Mapping (SLAM)

Implementation
Pose States

* Introduction DALHOUSIE
¢ SLAM Formulation @ UNIVERSITY
« EKF

Inspiring Minds

« Particle Filter

- Underwater SLAM ACADIA
L3 U NI VERSTI T Y

+ Concluding Remarks

* resampling step reinstates uniform weighting but causes

loss of historical particle information

« SIS with resampling produces reasonable statistics only for
systems that ‘exponentially forget’ their past

« general form for RB particle filter for SLAM:
— assume at time -7 the joint state is represented by:

{Wl@l»

Dalhousie Fall 2011 /2012 Academic Term
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6 — Simultaneous Localization and Mapping (SLAM)

* Introduction @ DALHOUSIE

¢ SLAM Formulation U N 1 VE RSI TY
EKF

Implementation Steps e i piring M
+ Underwater SLAM A CA D IA

+ Concluding Remarks

. predict
» apply motion prediction to each particle g,.,..«z: .
 make measurements AR
. probability distribution (ellipse)
« update, for each particle: as particle set (red dots)

« compare particle’s predictions of measurements with
the actual measurements

 assign weights such that particles with good
predictions have higher weights

 normalize weight of particles to sum to 1

* resample: generate new set of M particles which all have
equal weights 1/M reflecting probability density
of last particle set
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6 — Simultaneous Localization and Mapping (SLAM)

* Introduction DALHOUSIE
¢ SLAM Formulation @ UN]VE RSITY

Particle Filter SLAM Format . Parice Fiter spiring Ms
+ Underwater SLAM ACA D IA

+ Concluding Remarks

1. for each particle, compute a proposal distribution,
conditioned on the specific particle history, draw a sample

from it: - 7(x, | XOt 1 Zog1ty) |
this new sample is joined to the particle history X = )+

2. weight samples according to the importance function

p(z | X1 Zo40)

2 X$) L Zoguy)
the numerator terms are the observation model and the
motion model: the observation model differs because RB

requires dependency on the map be marginalized away.

wt(i) = w(i),_; X

p(zy | Xoy, Zoyp—1) = IP(Zt | x;,m)p(m | Xo-4_1,Z.4—1)dm
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6 — Simultaneous Localization and Mapping (SLAM) Introducti DA
+ Introduction LH IE
*  SLAM Formulation @ U N 1 V E(I){ISJIST Y

Particle Filter SLAM Format . Partce Fiter spiring Ms
+ Underwater SLAM ACA D IA

+ Concluding Remarks

3. If necessary, resample. When best to resample is an open
problem. Resampling is accomplished by selecting
particles, with replacement, from the set {X(z) }” iIncluding

assomated maps, with probably of selection pr%portlonal to

--e-g.].L (l)_l/N

-A‘

wy . Selected particles are given uniforrr

4. For each particle, perform an EKF update on the observed
landmarks as a simple mapping operation with known
vehicle pose.

Autonomous Robotics
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6 — Simultaneous Localization and Mapping (SLAM)

* Introduction DALHOUSIE
¢ SLAM Formulation @ UNIVERSITY

Particle Filter SLAM Format TS
+ Underwater SLAM AC.A.D.IA

+ Concluding Remarks

« several implementations of FastSLAM (particle filter), most
complete is FastSLAM 2.0

* For FastSLAM 2.0, the proposal distribution includes the
current observation: x” ~ p(x, | X{),u,)

such that:  p(x, | X, Zoyuy)

1 j '
B EP(Zt |xt’X(()l:t)—l>ZO:t—l)p(xt |xz§l—)1’“l‘)

where C is a normalizing constant

iImportance weight is wi) =wC
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6 — Simultaneous Localization and Mapping (SLAM) Introducti D ALHOUSIE
* Introduction
« SLAM Formulation UNIVERSITY

EKF Inspiring Minds

Particle Filter SLAM Format e
: Underwater SLAM A C A D I A

Concluding Remarks NV ERS LT

* proposal distribution is locally optimal — each particle gives

the smallest possible variance in importance weight

condition upon available information XO;Q,ZOj,and Uo:

250

200

e
(4]
=

Lattude (m)
=
—

[4q]
=

—150 —1:U-IZI —E:EIII IZI 5:0 1 éﬁlﬂ 1E0D
large scale outdoor SLAM [3]

Longitude (m)
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6 — Simultaneous Localization and Mapping (SLAM)

Particle Filter SLAM

FastSLAM Approach

solve state posterior using Rao-Blackwellized Particle Filter
each landmark estimate is represented by a 2x2 EKF

each particle is independent (due to factorization) from the
others and maintains the estimate of M landmark positions

« Introduction DALHOUSIE
*  SLAM Formulation UNIVERSITY
. EKF. ; Inspiring Minds
» Particle Filter

- Underwater SLAM ACADIA
+ Concluding Remarks ‘>"<‘ e C‘ v "[‘)' b

Pamicle | Landmark |

..... Landmark M

Landmark 2

..... Landmark M

Porticke ™ Landmark 1

Paricle 2 Landmark 1
n
n
n
[ ]
n

Landmark 2

e Landmark M

Particle set
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6 — Simultaneous Localization and Mapping (SLAM)

* Introduction DALHOUSIE
¢ SLAM Formulation @ UN]VE RSITY

Underwater SLAM . AC A D 1 A

+ Concluding Remarks

* use natural features of environment for navigation important
In applications where odometry and direction sensors are
unavailable

 for e.g. ship hull inspection by an AUV where sonar imaging
and range sensing present cost-effective alternatives to

high precision inertial navigation, and u/w ops near a large
steel structure means no compass, GPS, or long baseline
acoustic tracking

» a planar marine vehicle using range and bearing
measurements of a set of point features to traverse a path
with time-varying controller and estimator gains

Autonomous Robotics
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6 — Simultaneous Localization and Mapping (SLAM)

* Introduction DALHOUSIE
¢ SLAM Formulation @ UNIVERSITY

NaVigation Of AUV : Eggide Filter Inspiring Minds
« Underwater SLAM AC.A.D.IA

+ Concluding Remarks

» success of future AUVs lies in the ability to accurately
localize itself within the underwater domain

« underwater world limits the types of sensor available
compared to above water

« GPS is not available underwater

* however, if truly autonomous underwater vehicles are to be
developed, good navigation sensory information is needed
to achieve mission goals and provide safe operation

Autonomous Robotics
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Navigation of AUV

Current AUV Navigation Schemes

* inertial navigation

* Introduction @ DALHOUSIE

¢ SLAM Formulation
+ EKF
e Particle Filter

- Underwater SLAM ACADIA
L3 U NI VERSTI T Y

+ Concluding Remarks

UNIVERSITY

Inspiring Mi

— uses gyroscopic sensors to detect the acceleration of

the AUV

— significant improvement over dead reckoning and is
often combined with a Doppler velocity log which can
measure the AUV'’s relative velocity

* acoustic navigation

— uses transponder beacons to allow AUV to determine its

position

— most common method are long baseline which uses at
least two, widely separated transponders and ultra-short
baseline which uses GPS calibrated transponders on a

single surface ship
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Navigation of AUV gggﬁ;;g?;ulam %IL‘I’%(I)‘ISJ‘STIE
Current AUV Navigation Schemes Eg.lvéi:?ﬁmk PALabla

« geophysical navigation
— uses physical features of the AUV’s environment to
produce an estimate of the AUV location

— there can be pre-existing or purposefully deployed
features

 most current AUV’s are equipped with sensors which can
make use of a combination of all three methods

— different sensor data from each method needs to be
processed together throughout a mission to obtain an
optimal estimate of the AUV position

Autonomous Robotics
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Navigation of AUV

Current AUV Navigation Schemes
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+ Concluding Remarks

» techniques currently used for deriving an estimate of the
AUV’s position from such sensor data are

— Kalman filters
— particle filters
— SLAM

Dalhousie Fall 2011 /2012 Academic Term
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Concluding Remarks PN 1V ERS LT

 SLAM applied to ship hull inspections

MIT Bluefin Hovering Autonomous
Underwater Vehicle (HAUV) designed to
perform autonomous ship hull inspections
using SLAM. Identified mine-like objects
using DIDSON imaging sonar in real-time.

Autonomous Robotics
Dalhousie Fall 2011 / 2012 Academic Term Faculties of Engineering & Computer Science
CSCI 6905 / Mech 6905 — Section 6 ¢ i



6 — Simultaneous Localization and Mapping (SLAM)

- Introduction DALHOUSIE
. n = +  SLAM Formulation UNIVERSITY
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Feature Extraction © Undewatersiav — BIACADIA

Concluding Remarks v ERS 1T

Feature Extractor Detection Index
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Feature Extractor Detection Index g be'a"‘"‘%

Performance of real-time feature extractor demonstrated using a

DIDSON frame. Raw data (left) and the feature extractor detection
index for each rectangular quadrant of image (right). Areas where
features were identified (indicated by blue asterisk) correspond to high
peaks in the feature detection index.
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Real=Time Feature Exiractlon and Mapping on the USS Saratoga
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(a) Real-time map and vehicle localization
data obstained from a survey of the USS
Satatoga using an EKF.
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+ Concluding Remarks ~ ¥ v xtvewrsa

« group of unmanned surface vehicles (USV) for shallow
water hydrographic missions more efficiently and reliably
than a single one over a large environment

 issues of inter-vehicle map fusion and data association
« some level of collaboration required

Dalhousie Fall 2011 /2012 Academic Term utonomous Robotics Faculties of Engineering & Computer Science

CSCI 6905 / Mech 6905 — Section 6 73



6 — Simultaneous Localization and Mapping (SLAM)

* Introduction DALHOUSIE
¢ SLAM Formulation @ UNIVERSITY

[ m * EKF Inspiring Minds
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+ Concluding Remarks

* multi-beam sonar scanners used to extract features and
objects on the seabed

— combine features with accurate positional information to
build maps

* each USV performs SLAM independently over its local
region and at specified times fuses these independent
measurements to build an overall global map while
improving each vehicle’s position estimates

— combining information from multiple USVs challenged by
compounding positional errors of individual USVs and
varying uncertainties and sensor noise characteristics

— scalability for numbers of vehicles can be an issue
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+ Concluding Remarks

 local sub maps not only facilitate improved data association
but significantly improved performance gains due to
periodic map fusions (mosaicking)

— achieved through identifying common features from

——

overiapping areas
T e e
" » "}Q:.I- \

Two robots mapping independently with respect to » Y » \
local frames of reference. F refers to the global II . '5“_17] . '|
reference frame while F, ,and F, refers to the \ ,;—'{ "?'L-%H //
local reference frame of the two robots. Black & » ;f_;/“x;}ﬁ*
stars in local frames of reference correspond to /7 'I

the features mapped by each vehicle and red 1 |

ones correspond to the overlapping feature. "%._k " J.'

S i

Dalhousie Fall 2011 /2012 Academic Term Autonomous Robotics Faculties of Engineering & Computer Science

CSCI 6905 / Mech 6905 — Section 6 75



6 — Simultaneous Localization and Mapping (SLAM) introducti DALHOUSIE
* Introduction @

*  SLAM Formulation UNIVERSITY
- « EKF Inspiring Mind
Concluding Remarks . Paride Fite

- Underwater SLAM ACADIA
L3 U NI VERSTI T Y

+ Concluding Remarks

« SLAM is one of the most difficult problems in robotics

 EKF and particle filter are the two most popular solutions for
the SLAM problem

— particle filter is a more robust solution but there are
researchers in underwater SLAM that get good results
with EKF

« underwater SLAM is an area that is receiving more attention
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Concluding Remarks
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