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Lecture Outline
�• Concluding Remarks

�• Introduction 
�• Extended Kalman Filter�• Extended Kalman Filter
�• Particle Filter
�• Underwater SLAM
�• Concluding Remarks

�• based on diagrams and lecture notes adapted from:
P b bili i R b i (Th l )�– Probabilistic Robotics (Thrun, et. al.)

�– Autonomous Mobile Robots (Siegwart, Nourbakhsh)
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Control Scheme for Autonomous
Mobile Robot

�• Concluding Remarks
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Plan for Class  
�• Concluding Remarks

�• Thomas covered generalized Bayesian filters for 
localization last weeklocalization last week
�– Kalman filter most useful outcome for localization

�• Mae  covers path-planning and navigation
�• Mae then follows on with Bayesian filters to do a 

specific example, SLAM
Th t f ll ith i f t l i ft th t�• Thomas to follow with reinforcement learning after that
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Robot Mapping
When it is Applied

�• Concluding Remarks
pp

when is simultaneous localization and mapping (SLAM) 
needed?

�• when a robot has to be truly autonomous with no human 
intervention (e.g. underwater vehicles beyond a few km, 
millions of miles away in space the operator has nomillions of miles away in space the operator has no 
situational awareness of the robot�’s environment)

�• environment is unknown and there is no prior knowledgep g
�• beacons and networks cannot be deployed or used (e.g. in 

GPS denied areas like underwater or under-ice)
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Robot Mapping
Where it is Applied

�• Concluding Remarks
pp

�• in all environments robots are in

indoors underseaindoors undersea

space underground
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Robot Mapping Problems
Difficulty

�• Concluding Remarks
y

�• most difficult perceptual inference problem in mobile robots
�• acquiring a spatial model of the robot�’s environment foracquiring a spatial model of the robot s environment for 

navigation purposes
�• robot must have sensors that enable it to perceive its 

i t fi d lenvironment e.g. cameras, range finders, sonar, laser, 
tactile sensors, compass and GPS

�• sensors are subject to error (measurement noise)sensors are subject to error (measurement noise)
�• sensors have finite range (e.g. sound can�’t penetrate walls)

�– this means the robot has to navigate through its g g
environment when map building

�• motions commands (controls) issued during mapping carry 
information for building maps since they convey info about
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Markov Localization (Bayes Filter)
Quick Review 

�• Concluding Remarks

�• observation model:                    or
�– probability of a measurement zt given that the robot is at

( | )t tP z x ( | , )t tP z x m
probability of a measurement zt given that the robot is at 
position xt and map m

�• motion model:  ),|( 1 ttt uxxP
�– posterior probability that action ut takes the robot from 

states xt-1 to xt

�• belief�• belief
�– posterior probability
�– conditioned on available dataconditioned on available data
�–

�• prediction
),|()( tttt uzxpxBel
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Markov Localization(Bayes Filters)
Quick Review 

�• Concluding Remarks

�• prediction (prior):
bel(xo) is uniform over all poses

(convolves motion model with 

111 )(),|()( tttttt dxxbelxuxpxbel
observation model, p(zt|xt,m)

bel(xt)=bel(x0) ×p(zt|xt,m)

belief from previous time step)

d t ( t i )

t 0 t t

robot moves to the right
bel(xt) p(xt|ut,xt-1)

�• update (posterior):

incorporates the measurement
)()|()( tttt xbelxzpxbel

incorporates the measurement
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Markov Localization (Bayes Filter)
Quick Review 

�• Concluding Remarks

�• for developing a range/bearing sensor model it is useful to 
introduce a correspondence variable between the feature ft

ip ft
and the landmark mj of the map
�– this variable is the correspondence and it is denoted ct

i 

i i th t id tit f th b d f t f i�– ct
i is the true identity of the observed feature ft

i

�• EKF localization assumes the map is represented by a 
collection of features and that the correspondences arecollection of features and that the correspondences are 
known
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Robot Mapping Challenges
1.  Modelling Measurement Noise

�• Concluding Remarks
g

�• robot motion itself is subject to errors and controls alone are 
insufficient to determine a robot�’s pose within its p
environment

�• modelling measurement noise is a key challenge
b ti i ld b l ti l if th i f�– robotic mapping would be relatively easy if the noise of 

different measurements are statistically independent
�• robot would just make more measurements to negaterobot would just make more measurements to negate 

noise effects
�– unfortunately, with robotic mapping measurements 

errors are statistically dependent
�• errors in controls accumulate over time and affect the 

way sensor measurements are made

Faculties of Engineering & Computer Science      
11

Autonomous Robotics
CSCI 6905 / Mech 6905 �– Section 6

Dalhousie Fall 2011 / 2012 Academic Term

way sensor measurements are made



�• Introduction 
�• SLAM Formulation
�• EKF
�• Particle Filter
�• Underwater SLAM

C l di R k

6 – Simultaneous Localization and Mapping (SLAM)

Robot Mapping Challenges
Localization and Mapping

�• Concluding Remarks
pp g

�• mapping sometimes referred to in conjunction with 
localization (determine robot pose)( p )
�– estimating where things are and determining where the 

robot is (both have uncertainty) �– is solved in conjunction
ll th t d t l i t b�– allows the measurement and control noise to be 

independent in the robot state estimation
�• thus the problem of mapping creates an inherent robotthus the problem of mapping creates an inherent robot 

localization problem so robot mapping is also referred to as  
concurrent mapping and localization (CML) 

�• state-of-the-art algorithms in mapping are probabilistic due 
to the uncertainty and sensor noise
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Robotic Mapping Challenges
1.  Modelling Measurement Noise

�• Concluding Remarks

cumulative effect of control errors on future sensor 
interpretations

g

p

small rotation error at one end of a corridor cumulates to many meters 
of error at the other end relative to map for robot path obtained by 
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Robotic Mapping Challenges
2.  High Dimensionality of Entities

�• Concluding Remarks
g y

�• consider the info to describe your home environment with 
just corridors, intersections, rooms, and doorsj
�– detailed 2D floor plan requires thousands of coordinates 

to define
3D i l ld i illi f di t�– 3D visual map would require millions of coordinates

�– from a statistical perspective, each coordinate is a 
dimension of the estimation problemdimension of the estimation problem
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Robotic Mapping Challenges
3.  Correspondence Problem

�• Concluding Remarks
p

�• also referred to as the data association problem �– most 
difficult problemp
�– determine if sensor measurements taken at different 

times correspond to the same physical object

robot trying to map a cyclic 
environment; when closing cycleenvironment; when closing cycle 
robot has to localize itself relative to 
the previous map �– by then, 
cumulated pose error may be 
unbounded
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Robotic Mapping Challenges
4.  Environment Changes with Time

�• Concluding Remarks
g

�• on scales that vary depending on the environment:
�– from a tree that changes very slowlyfrom a tree that changes very slowly 
�– sea bottom that changes due to currents over days
�– location of a chair that could change on the order of 

minutes,
�– or people movement that changes constantly

�• environment changes manifest as inconsistent sensor 
measurements (when they are not)measurements (when they are not)
�– few algorithms that learn meaningful maps of dynamic 

environments (lots of room for research contributions 
h !)
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Robot Mapping Challenges
5.  Path-Planning On-the-Fly

�• Concluding Remarks
g y

�• robot must plan its path during mapping
�• task of generating robot motion plans to build a map istask of generating robot motion plans to build a map is 

referred to as robotic exploration
�– optimal path planning in  a fully modelled environment is 

l ti l ll d t drelatively well understood
�– robots in unknown environments has incomplete model 

have to accommodate contingencies and surprises that�– have to accommodate contingencies and surprises that 
arise during map building

�• generate plans in near real-time g
�• where to move balanced against map information 

gain and time and energy to obtain info as well as 
possible loss of pose info along the way
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The SLAM Problem
�• Concluding Remarks

A mobile robot can build a map of an environment and at the 
same time use this map to deduce its location.  The trajectory 
of the robot and the location of all landmarks are estimatedof the robot and the location of all landmarks are estimated 
on-line without the need for any a priori knowledge of location

�• simultaneous estimate of 
both robot and landmark 
locations requiredlocations required

�• true locations are never 
known or measured directly  

�• observations are made 
between the true robot and 
landmark locations
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Probabilistic SLAM
Recursive Solution

�• Concluding Remarks

�• compute the probability distribution for all times t
(*)                                   ),,|,( 0:0:0:0 xUZmXp ttt

this is the joint posterior density of the landmark location 
and vehicle state xt given recorded observations Z & control 
i t ( t d i l di ) ith i iti l hi l

( )),,|,( 0:0:0:0p ttt

inputs U (up to and including t) with initial vehicle pose xo

�• desire a recursive solution (i e calc from the same�• desire a recursive solution (i.e. calc from the same 
probability distribution from previous time step)
�– start with estimate for distribution 

at t-1, use Bayes theorem to determine the joint 
t i f ll i t l d b ti

),|,( 1:01:01 ttt UZmxp
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Probabilistic SLAM
Observation and Motion Models

�• Concluding Remarks

�• need motion (state transition) and observation models to 
describe the effect of the control input, utp t

�• observation model when robot and landmark location 
kknown: 

),|( mxzp tt

�• motion model for state transitions: 
state transition is assumed to be a Markov process where

),|( 1 ttt uxxp
state transition is assumed to be a Markov process where 
next state xt depends only on the immediate state, t-1,
before it and applied control ut

i d d t f b ti d
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SLAM 
Problem Formulation 

�• Concluding Remarks

�• no map available and no pose information
),|,( :0:0:0 ttt UZmXp

landmark 1 m1

z z

)|( :0:0:0 tttp

. . .
observations

robot poses x1 x2 xt

z1

x3

z3

x
0

controls u1 ut-1
u
1

0

u0 

m2

z2 zt

landmark 2
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Two Forms of SLAM
�• Concluding Remarks

there are really two forms of the SLAM problem: 
�• full SLAM: estimates posterior for entire path (0:t) and map�• full SLAM:  estimates posterior for entire path (0:t) and map 

which is what is discussed so far (particle filter solution):
),|,( :0:0:0 ttt UZmXp

�• online SLAM:  estimates posterior for current pose using 
most recent pose and map only (i.e. last time 
t ) )

:0:0:0 ttt

step) (EKF solution))

i t ti t i ll d t ti
1210:0:0:0:0:0 ...),|,(),|,( ttttttt dxdxdxdxUZmXpUZmxp

integrations typically done one at a time 
�– discards past controls and measurements once 

processed since they are not used again
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SLAM Feature
�• Concluding Remarks

�• a continuous and discrete component
�• continuouscontinuous

�– location of objects in the map and the robot pose
�• objects may be landmarks in the feature-based 

representation
�• object patches detected by range finders

di t ( thi l t )�• discrete (more on this later)
�– correspondence or data association between landmarks 

and measurements, i.e. how a newly detected objectand measurements, i.e. how a newly detected object 
relates to previously detected ones

�• either the object was previously detected or it was not
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On-line SLAM
�• Concluding Remarks

�• graphical model of on-line SLAM (one pose at a time)

)|()|( dxdxdxdxUZmXpUZmxp
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Full Blown SLAM
�• Concluding Remarks

�• graphical model of full blown SLAM

)|( UZX
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Probabilistic SLAM
�• Concluding Remarks

�• SLAM implemented in standard 2-step recursive prediction 
(time update) correction (measurement update) form:( p ) ( p )
time update (prior distribution)

10:01:0
)|(

),|(),,|,( tttttt
dUZ

uxxpxUZmxp

measurement update (posterior distribution)
101:01:01 ),,|,(                                        tttt dxxUZmxp

)|()|( UZ

�• now have a recursive procedure for calculating

),|(
),,|,(),|(

),,|,(
:01:0

0:01:0
0:0:0

ttt

ttttt
ttt UZzp

xUZmxpmxzp
xUZmxp

�• now, have a recursive procedure for calculating

�• for robot state xt and map m at time t based on all control 
 ),,|,( 0:0:0:0 xUZmXp ttt
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Strength of SLAM
�• Concluding Remarks

�• the error between estimated & true landmark locations are 
common between landmarks and come from a single g
source:  errors in knowledge of where the robot is when the 
landmark observations were made

landmark location error estimates are highly correlated�– landmark location error estimates are highly correlated
�– relative location between landmarks mi �– mj known with 

good accuracy even when absolute locations uncertaing y
�– correlations between landmark estimates increase 

monotonically as more and more observations are made
�– knowledge of relative location of landmarks always 

improves and never diverges regardless of robot motion
�• this is due to observations being nearly independent
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SLAM Solutions
�• Concluding Remarks

�• now require representations for:
�– motion modelmotion model
�– observation model

that allow efficient and consistent computation of the prior 
(time) and posterior (measurement) distributions

�• most common representation is with state space model and 
additive Gaussian noise which leads to use of extendedadditive Gaussian noise which leads to use of extended 
Kalman filter (EKF) solution

�• alternative representation is to describe robot motion model 
as a set of samples of a more general non-Gaussian 
probability distribution which leads to the use of particle 
filter or FastSLAM as another solution
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SLAM in Action – 1 / 9
�• Concluding Remarks

�• use internal representations for
�– positions of landmarks (map)positions of landmarks (map)
�– sensor parameters

�• assume:  robot uncertainty at
start position is zero

start:  robot has zero uncertainty
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SLAM in Action – 2 / 9
�• Concluding Remarks

di t h th b t h d
first measurement of feature A

�• predict how the robot has moved
�• measure
�• update the internal representation
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SLAM in Action – 3 / 9
�• Concluding Remarks

�• robot observes a feature which 
is mapped with an uncertainty pp y
related to the sensor error 
model (i.e. measurement 
model)model)

di t h th b t h d�• predict how the robot has moved
�• measure
�• update the internal representation
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SLAM in Action – 4 / 9
�• Concluding Remarks

�• as robot moves (in response to 
the motion mode), its pose ) p
uncertainty increases

robot moves forwards:  uncertainty grows
di t h th b t h d

y g
�• predict how the robot has moved
�• measure
�• update the internal representation
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SLAM in Action – 5 / 9
�• Concluding Remarks

�• robot observes two new features

robot makes first measurements of B & C
di t h th b t h d�• predict how the robot has moved

�• measure
�• update the internal representation
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SLAM in Action – 6 / 9
�• Concluding Remarks

�• their position uncertainty 
results from the combination of 
the measurement error with the 
robot pose uncertainty

map becomes correlated�– map becomes correlated 
with the robot position 
estimate

robot makes first measurement of B & C
di t h th b t h d�• predict how the robot has moved

�• measure
�• update the internal representation
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6 – Simultaneous Localization and Mapping (SLAM)

SLAM in Action – 7 / 9
�• Concluding Remarks

�• robot moves again and its 
uncertainty increases (motion y (
model)

robot moves again:  uncertainty grows still 
di t h th b t h d more�• predict how the robot has moved

�• measure
�• update the internal representation
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6 – Simultaneous Localization and Mapping (SLAM)

SLAM in Action – 8 / 9
�• Concluding Remarks

�• robot re-observes an old feature
�– loop closure detectionloop closure detection

robot re-measures A: �“loop closure�”
di t h th b t h d�• predict how the robot has moved

�• measure
�• update the internal representation
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6 – Simultaneous Localization and Mapping (SLAM)

SLAM in Action – 9 / 9
�• Concluding Remarks

�• robot updates its position:  the 
resulting position estimate g p
becomes correlated with the 
feature location estimates

�• robot�’s uncertainty decreases�• robot s uncertainty decreases 
and so does the uncertainty in 
the rest of the map

robot re-measures A: �“loop closure�” 
di t h th b t h d uncertainty decreases�• predict how the robot has moved

�• measure
�• update the internal representation
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About Covariance Matrix 
�• Concluding Remarks

�• correlation measures the degree of linear dependence between two variables
�• covariance of two variables measure how strongly correlated two variables are
�• covariance matrix contains the covariance on: robot position, landmarks, 

between robot position and landmarks and between the landmarks
�• cell A contains the covariance on robot position, a 3 by 3 matrix (x, y and ) 

B is the co ariance on the first landmark a 2 b 2 matri since the landmark�• B is the covariance on the first landmark, a 2 by 2 matrix, since the landmark 
does not have orientation, ; C is covariance for the last landmark. 

�• D contains the covariance between the robot state and the first landmark; E
contains the covariance between the first landmark and the robot state; E cancontains the covariance between the first landmark and the robot state; E can 
be deduced from D by transposing sub-matrix D

�• F contains the covariance between the last landmark and the first landmark, 
while G contains the covariance between the first landmark and the last 
landmark, which again can be deduced by transposing F

�• cov(X, Y) = E{[X - E(X)][Y - E(Y)]}
�• cor(X, Y) = cov(X, Y) / [sqrt(var(x) *sqrt(var(Y)]
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EKF SLAM Implementation
�• Concluding Remarks

�• Kalman filters are Bayesian filters that represent posterior, 
p(xt, m | zt, ut) with Gaussiansp(xt, m | zt, ut) with Gaussians

Example of Kalman filter estimation 
of the map and vehicle pose [1]of the map and vehicle pose [1].

Shown is the path of an AUV with 
range measurements from a sonar.  
14 features are identified from the 
sonar data.

Ellipse around features conveyEllipse around features convey 
uncertainty that remains after 
mapping as specified by the 
covariance matrix
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EKF SLAM Implementation
Results Mapped

�• Concluding Remarks
pp

(a) map of landmarks obtained in simulation (b) correlation matrix after 278 
iterations of Kalman filter mapping.  Checkerboard appearance verifies 
theoretical find that in the limit all landmark location estimates are fullytheoretical find that in the limit, all landmark location estimates are fully 
correlated (c)  normalized inverse covariance matrix of the same estimate 
shows the dependencies are local.
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Kalman Filtering
Assumptions

�• Concluding Remarks
p

�• three main ones:
(i) next state function (motion model) linear with added(i) next state function (motion model) linear with added 

Gaussian noise
(ii) same is true of the perceptual model
(iii) the initial uncertainty must be Gaussian

Faculties of Engineering & Computer Science      
41

Autonomous Robotics
CSCI 6905 / Mech 6905 �– Section 6

Dalhousie Fall 2011 / 2012 Academic Term



�• Introduction 
�• SLAM Formulation
�• EKF
�• Particle Filter
�• Underwater SLAM

C l di R k

6 – Simultaneous Localization and Mapping (SLAM)

Extended Kalman Filter (EKF)
State Model

�• Concluding Remarks

�• in a linear state function, robot pose xt, and map mt, at time t
~ linearly with previous pose xt-1,  map mt-1, and control uty p p t 1 p t 1 t

�– for map, obviously true since the map does not change
�– however, xt usually governed by a trig function that 

i li l ith i d t lvaries nonlinearly with previous pose xt-1 and control ut

�• to accommodate such nonlinearities Kalman filters 
approximate the robot motion model with a linearapproximate the robot motion model with a linear 
function obtained via Taylor series expansions to yield 
the extended Kalman Filter (EKF)

�• motion commands approximated by a series of 
smaller motion segment

�– usually works well for most robotic vehicles
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EKF SLAM
State Motion Model

�• Concluding Remarks

�• p(xt | xt-1 ,ut) = Axt-1 + But + wt

�• A and B are matrices that implement linear mapping fromA and B are matrices that implement linear mapping from 
state xt-1 and motion command u to state xt

�– noise (assumed Gaussian) in motion is modeled via wt
hi h i d t b ll di t ib t d ithwhich is assumed to be normally distributed with zero 

mean and covariance Qt

more specifically,
�• ttttttt wuxfxuxxp ),(),|( 11

where f(..) models the robot dynamics / kinematics / 
odometry
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EKF SLAM
Observation Model

�• Concluding Remarks

�• sensor measurements usually nonlinear with non-Gaussian 
noise

�• approximate through a first degree Taylor series expansion, 
i.e.  p(zt |xt, m) = Cxt + vt

i t i ( li i ) d i th ll�• C is a matrix (a linear mapping) and vt  is the normally 
distributed measurement noise with zero mean and 
covariance Rtt

more specifically,
�• where h(..) describes the geometry of the observation 

ttttt vmxhzmxzp ),(),|(

�• these approximations work well for robots that can measure 
their ranges and bearings to landmarks
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EKF SLAM 
Overview

�• Concluding Remarks

�• similar to EKF implementation for robot localization
�• EKF SLAM summarizes all past experience in an extendedEKF SLAM summarizes all past experience in an extended 

state vector, yt compromising of robot pose xt and the 
position of all map features mt and an associated 
covariance matrix :covariance matrix yt :

11111

11

........
..
..

    ,...
n

n

mmmmxm

xmxmxx

ytt
t

t
m
x

y
- for a MindStorm robot, 
size of yt = 3 + 2n  since the 
n map feature have only 2

�• as robot moves and makes measurements, yt and yt are 
11111

..1
nnnn mmmmxm

nm
n map feature have only 2 
coordinates each
- size of yt = (3+2n)2

yt yt
updated with the standard EKF equations

�• correlations are important for convergence, the more 
observations that are made the more correlations between
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Compute Mean and Covariance
Time Update

�• Concluding Remarks
p

�• apply standard EKF method to calculate the mean
tttt Zxx :0| |

�• and covariance:
t

tt

t

tt
Zm

E
m :0

:0|
|
|

xmxx
|

tZ

T
tttt

ttmm
T
xm

tt

mm
xx

mm
xx

E
:0|

|
|

�• of the joint posterior distribution p(xt ,m|Z0:t ,U0:t , x0) from 
time update

tt mmmm

�• time update
1|1,1|,

1|11|

i dhl dfJ bihih h

),(

t
T

ttxxttxx

ttttt

ff

Qff
uxfx
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Compute Mean and Covariance
Observation Update

�• Concluding Remarks

�• observation update:

|ttx

1||

11|1|
|

  

)],(

T
ttttttt

tttttttt
t

tt

WSW

mxhzWmx
m
x

1

||

such that
t

T
t|t-t RhhS

and is the Jacobian of h evaluated at

1
1|

1

t
T

ttt

tt|tt
ShW

h and mxand        is the Jacobian of h evaluated ath 11| and ttt mx

h // b / h? NDdHL34
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EKF SLAM Drawbacks
�• Concluding Remarks

convergence
�• convergence of the map is based on the monotonicconvergence of the map is based on the monotonic 

convergence of the determinant of the map covariance 
matrix ( mm,t) and all landmark pair submatrices to zero

computational effort
�• observation update step requires all landmarks and the�• observation update step requires all landmarks and the 

covariance matrix be updated every time an observation is 
made  computation grows quadratically with # of 
landmarks, it is a little better than that with optimizations
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EKF SLAM Drawbacks
�• Concluding Remarks

data association
�• errors in associating observations with landmarks breaks iterrors in associating observations with landmarks breaks it  

�– loop-closure where a robot returns to re-observe 
landmarks after having been away a long time is difficult

�– especially difficult if landmarks are not simple points and 
look different from different directions (e.g. mines with 
side scan sonar images)side scan sonar images)

nonlinearityy
�• linearized versions of nonlinear model and observation 

models used
lt i h i i t i i th l ti
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FastSLAM 
�• Concluding Remarks

better solution: FastSLAM [2] using a particle filter
�– fundamental shift in recursive probabilistic SLAMfundamental shift in recursive probabilistic SLAM
�– particle filter captures the nonlinear process model and 

non-Gaussian pose distribution for robot pose estimation
�– Rao-Blackwellized method reduces computation effort 

(FastSLAM still linearizes observation model, like EKF)     
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Particle Filter SLAM
Definitions

�• Concluding Remarks

�• particle filter: models that represent probability distributions as 
a set of discrete particles which occupy the state p py
space

�• particle: a point estimate of the state with an associated 
weight ( )weight, w,  pi = (yti, wi)

each particle defines a different vehicle trajecotryeach particle defines a different vehicle trajecotry 
hypothesis 
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Particle Filters
Overview

�• Concluding Remarks

�• high dimensionality state-space of SLAM makes direct 
application of particle filters computationally infeasiblepp p p y

�• it is possible to reduce the sample space by applying a 
particle filter where a joint space is partitioned according to 
product rule: )()|()(product rule:  

�• if p(x2|x1) can be represented analytically then only p(x1)

)()|(),( 11221 xpxxpxxp

if p(x2|x1) can be represented analytically then only p(x1) 
need be sampled 

�• joint distribution is then represented by the set:
)(~ 1

)(
1 xpx i

N
i

ii xxpx  |2(, )(
1

)(
1

and statistics such as the marginal probability
)(

122 |1)( iN
xxp

N
xp
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Particle Filters
Overview

�• Concluding Remarks

�• recursive estimate performed by particle filtering for pose 
states and EKF for map statesp

�• represents beliefs by random samples
�• estimation of nonlinear, non-Gaussian processes
�• Sampling Importance Re-Sampling (SIR) principle

�– draw the new generation of particles
i i t i ht t h ti l�– assign an importance weight to each particle

�– re-sample as needed
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Implementation
�• Concluding Remarks

�• as with EKF, the joint SLAM state may be factored into a 
robot component and a conditional map component:p p p

)|()|(

),,|,(

000000

0:0:0:0

xUZXpZXmp

xUZmxp ttt

�– the probability distribution is on the trajectory X0:t rather 
than the single pose x

),,|(),|( 0:0:0:0:0:0 xUZXpZXmp ttttt

than the single pose xt

�– when conditioned on the trajectory the landmarks 
become independent �– that is why particle filters are so y
fast

�– map is represented as a set of independent Gaussians
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Implementation
Overview

�• Concluding Remarks

�• essential structure of FastSLAM is a Rao-Blackwellized 
(RB) state where the trajectory is modelled by weighted ( ) j y y g
samples and the map is determined analytically

�• joint distribution at time t, is represented by the set:

where the map associated with each particle is composed

N
it

i
t

i
t

i
t ZXmpXw  ),|(,, :0

)(
:0

)(
:0

)(

where the map associated with each particle is composed 
of independent Gaussian distributions:

M ii ZXZX )|()|( )()(

�• recursive estimation performed by particle filtering for the 
t t d th EKF till f th t t

j
t

i
tjt

i
Y ZXmpZXmp ),|(),|( :0

)(
:0:0

)(
:0
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Implementation
Map

�• Concluding Remarks
p

�• updating map for given trajectory particle       is trivial
�• each observed landmark is processed individually as an

)(
:0
i
tX

each observed landmark is processed individually as an 
EKF measurement update from a known pose

�• unobserved landmarks are unchanged

A single realization of robot trajectory in the 
FastSLAM process.  Ellipsoids show the proposal 
distribution for each update stage from which a p g
robot pose is sampled, and, assuming this pose is 
perfect, the observed landmarks are updated.  
Thus, the map for a single particle is governed by 
the accuracy of the trajectory Many of thesethe accuracy of the trajectory.  Many of these 
trajectories provide a probabilistic model of robot 
location.
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Implementation
Pose States

�• Concluding Remarks

�• propagating the pose particles is much more complex
�• particle filter is derived from a recursive form of sample,particle filter is derived from a recursive form of sample, 

sequential important sampling (SIS) which samples from a 
joint state history and �‘telescopes�’ the joint into a recursion 
via the product rule:via the product rule:

at each time step t particles are drawn from a proposal
),|(),...,,|()|()|,...,,( :01:0:001:00:010 TTTTTTT ZXxpZxxpZxpZxxxp

at each time step t, particles are drawn from a proposal 
distribution:                           which approximates the true 
distribution                      and the samples are given 
importance weights

),|( :01:0 ttt ZXx
),|( :01:0 Ttt ZXxp

importance weights
�• approximation error grows with time increasing the variation 

in sample weights and thus degrade the statistical accuracy 
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Implementation
Pose States

�• Concluding Remarks

�• resampling step reinstates uniform weighting but causes 
loss of historical particle informationp

�• SIS with resampling produces reasonable statistics only for 
systems that �‘exponentially forget�’ their past

l f f RB ti l filt f SLAM�• general form for RB particle filter for SLAM:
�– assume at time t-1 the joint state is represented by:

N)()()( N

it
i
t

i
t

i
t ZXmpXw  ),|(,, 1:0
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Implementation Steps 
�• Concluding Remarks

�• predict
�• apply motion prediction to each particleapply motion prediction to each particle

�• make measurements
�• update, for each particle:

probability distribution (ellipse) 
as particle set (red dots)

�• compare particle�’s predictions of measurements with 
the actual measurements

i i ht h th t ti l ith d�• assign weights such that particles with good 
predictions have higher weights

�• normalize weight of particles to sum to 1normalize weight of particles to sum to 1
�• resample: generate new set of M particles which all have 

equal weights 1/M reflecting probability density 
f l t ti l t
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Particle Filter SLAM Format
�• Concluding Remarks

1. for each particle, compute a proposal distribution, 
conditioned on the specific particle history, draw a sample p p y p
from it: 
this new sample is joined to the particle history

2 i ht l di t th i t f ti

),,|(~ :0
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1:0
)(

tt
i
tt

i
t uZXxx

)()(
1:0

)(
:0 , i

t
i
t

i
t xXX

2. weight samples according to the importance function

)|(
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1:0
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i
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t
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t
uZXx

ZXzp
iww

the numerator terms are the observation model and the 
motion model;  the observation model differs because RB 

),,|( :0
)(

1:0
)(

tttt uZXx

requires dependency on the map be marginalized away.

dmZXmpmxzpZXzp ttttttt ),|(),|(),|( 1:01:01:0:0
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Particle Filter SLAM Format
�• Concluding Remarks

3. If necessary, resample.  When best to resample is an open 
problem.  Resampling is accomplished by selecting p p g p y g
particles, with replacement, from the set             including 
associated maps, with probably of selection proportional to 

Selected particles are given uniform weight

)()(
:0   

i

N
i
tX

)(iw Ni /1)(.  Selected particles are given uniform weight, 

4 For each particle perform an EKF update on the observed

)(
tw Nwt /1)(

4. For each particle, perform an EKF update on the observed 
landmarks as a simple mapping operation with known 
vehicle pose.
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Particle Filter SLAM Format
�• Concluding Remarks

�• several implementations of FastSLAM (particle filter), most 
complete is FastSLAM 2.0p

�• For FastSLAM 2.0, the proposal distribution includes the 
t b ti )()( iicurrent observation:

such that: 
),|(~ )(
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t
i
tt

i
t uXxpx
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where C is a normalizing constant
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where C is a normalizing constant 
importance weight is Cww i
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t
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Particle Filter SLAM Format
�• Concluding Remarks

�• proposal distribution is locally optimal �– each particle gives 
the smallest possible variance in importance weight p p g
condition upon available information  tt

i
t UZX :0:0

)(
1:0  and ,,

large scale outdoor SLAM [3]
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Particle Filter SLAM
FastSLAM Approach

�• Concluding Remarks
pp

�• solve state posterior using Rao-Blackwellized Particle Filter
�• each landmark estimate is represented by a 2x2 EKFeach landmark estimate is represented by a 2x2 EKF
�• each particle is independent (due to factorization) from the 

others and maintains the estimate of M landmark positions
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Underwater SLAM
�• Concluding Remarks

�• use natural features of environment for navigation important 
in applications where odometry and direction sensors are 
unavailable

�• for e.g. ship hull inspection by an AUV where sonar imaging 
and range sensing present cost-effective alternatives toand range sensing present cost effective alternatives to 
high precision inertial navigation, and u/w ops near a large 
steel structure means no compass, GPS, or long baseline 
acoustic trackingacoustic tracking

�• a planar marine vehicle using range and bearing 
measurements of a set of point features to traverse a path 
with time varying controller and estimator gainswith time-varying controller and estimator gains
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Navigation of AUV
�• Concluding Remarks

�• success of future AUVs lies in the ability to accurately 
localize itself within the underwater domain

�• underwater world limits the types of sensor available 
compared to above water
GPS i t il bl d t�• GPS is not available underwater

�• however, if truly autonomous underwater vehicles are to be 
developed good navigation sensory information is neededdeveloped, good navigation sensory information is needed 
to achieve mission goals and provide safe operation
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Navigation of AUV
Current AUV Navigation Schemes

�• Concluding Remarks
g

�• inertial navigation
�– uses gyroscopic sensors to detect the acceleration ofuses gyroscopic sensors to detect the acceleration of 

the AUV
�– significant improvement over dead reckoning and is 

ft bi d ith D l l it l hi hoften combined with a Doppler velocity log which can 
measure the AUV�’s relative velocity

�• acoustic navigationacoustic navigation
�– uses transponder beacons to allow AUV to determine its 

position
�– most common method are long baseline which uses at 

least two, widely separated transponders and ultra-short 
baseline which uses GPS calibrated transponders on a
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Navigation of AUV
Current AUV Navigation Schemes

�• Concluding Remarks
g

�• geophysical navigation
�– uses physical features of the AUV�’s environment touses physical features of the AUV s environment to 

produce an estimate of the AUV location
�– there can be pre-existing or purposefully deployed 

f tfeatures
�• most current AUV�’s are equipped with sensors which can 

make use of a combination of all three methodsmake use of a combination of all three methods
�– different sensor data from each method needs to be 

processed together throughout a mission to obtain an 
optimal estimate of the AUV position
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Navigation of AUV
Current AUV Navigation Schemes

�• Concluding Remarks
g

�• techniques currently used for deriving an estimate of the 
AUV�’s position from such sensor data arep
�– Kalman filters
�– particle filters
�– SLAM
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Ship Hull Monitoring
�• Concluding Remarks

�• SLAM applied to ship hull inspections

MIT Bluefin Hovering Autonomous 
Underwater Vehicle (HAUV) designed to 
perform autonomous ship hull inspections 
using SLAM.  Identified mine-like objects 
using DIDSON imaging sonar in real-time
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Ship Hull Monitoring
Feature Extraction �• Concluding RemarksFeature Extraction

Performance of real-time feature extractor demonstrated using a 
DIDSON frame.  Raw data (left) and the feature extractor detection 
index for each rectangular quadrant of image (right).  Areas where 
features were identified (indicated by blue asterisk) correspond to high 
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Ship Hull Monitoring
Feature Extraction �• Concluding RemarksFeature Extraction

(a) Real-time map and vehicle localization ( ) p
data obstained from a survey of the USS 
Satatoga using an EKF.  

(b) A sonar mosaic image of the targets(b) A sonar mosaic image of the targets 
placed on the ship hull
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Multi-Vehicle SLAM
�• Concluding Remarks

�• group of unmanned surface vehicles (USV) for shallow 
water hydrographic missions more efficiently and reliably y g p y y
than a single one over a large environment

�• issues of inter-vehicle map fusion and data association
l l f ll b ti i d�• some level of collaboration required
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Multi-Vehicle SLAM
�• Concluding Remarks

�• multi-beam sonar scanners used to extract features and 
objects on the seabedobjects on the seabed
�– combine features with accurate positional information to 

build maps
�• each USV performs SLAM independently over its local 

region and at specified times fuses these independent 
measurements to build an overall global map whilemeasurements to build an overall global map while 
improving each vehicle�’s position estimates
�– combining information from multiple USVs challenged by 

di i i l f i di id l USV dcompounding positional errors of individual USVs and 
varying uncertainties and sensor noise characteristics

�– scalability for numbers of vehicles can be an issue
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Multi-Vehicle SLAM
�• Concluding Remarks

�• local sub maps not only facilitate improved data association 
but significantly improved performance gains due to g y p p g
periodic map fusions (mosaicking)
�– achieved through identifying common features from 

overlapping areasoverlapping areas

Two robots mapping independently with respect to pp g p y p
local frames of reference.  FG refers to the global 
reference frame while FL1 and FL2 refers to the 
local reference frame of the two robots.  Black 
stars in local frames of reference correspond to p
the features mapped by each vehicle and red 
ones correspond to the overlapping feature.
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Concluding Remarks
�• Concluding Remarks

�• SLAM is one of the most difficult problems in robotics
�• EKF and particle filter are the two most popular solutions forEKF and particle filter are the two most popular solutions for 

the SLAM problem
�– particle filter is a more robust solution but there are 

h i d t SLAM th t t d ltresearchers in underwater SLAM that get good results 
with EKF

�• underwater SLAM is an area that is receiving more attentionunderwater SLAM is an area that is receiving more attention 
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hw #3, quest 2, part (ii)
�• Concluding Remarks

�• for range of 10 units, range res = 0.25, ang res = 2.5 deg
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